Please check the examination details bel	low before entering your candidate information					
Candidate surname	Other names					
Centre Number Candidate No Pearson Edexcel Le						
Time 2 hours	Paper preference 9MAO/01					
Mathematics						
Advanced						
PAPER 1: Pure Mathematics 1						
You must have: Mathematical Formulae and Statistica	al Tables (Green), calculator					

Candidates may use any calculator allowed by Pearson regulations.

Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 16 questions in this question paper. The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

1. The point P(-2, -5) lies on the curve with equation $y = f(x), x \in \mathbb{R}$

Find the point to which P is mapped, when the curve with equation y = f(x) is transformed to the curve with equation

(a)
$$y = f(x) + 2$$

(1)

(b)
$$y = |f(x)|$$

(1)

(c)
$$y = 3f(x - 2) + 2$$

(2)

a) 4: +2

b) Any negative y's become positive

c) >c : +2

4: x 3, t2 (order matters)

(-2,-5) be comes (-2+2, 3(-5)+2)

2. $f(x) = (x-4)(x^2-3x+k)-42$ where k is a constant

Given that (x + 2) is a factor of f(x), find the value of k.

(3)

(20+2) is a factor means that f(-2)=0

f(-2)=(-2-4)[(-2)2-3(-2)+K]-42

= -6(4+6+K)-42

= - 6 (10+K) - +2

= -60-6K-+2

= -6K-102

f(-5) = 0

=) - 6K-102 =0

7-6K = 102

= K=-17

3. A circle has equation

$$x^2 + y^2 - 10x + 16y = 80$$

- (a) Find
 - (i) the coordinates of the centre of the circle,
 - (ii) the radius of the circle.

(3)

Given that P is the point on the circle that is furthest away from the origin O,

(b) find the exact length *OP*

(2)

4. (a) Express $\lim_{\delta x \to 0} \sum_{x=2}^{6.3} \frac{2}{x} \delta x$ as an integral.

(1)

(b) Hence show that

$$\lim_{\delta x \to 0} \sum_{x=2.1}^{6.3} \frac{2}{x} \delta x = \ln k$$

where k is a constant to be found.

(2)

- $b) \left[2\ln x \right]_{2.1}^{2.3}$
 - = 21N6. 3 21N2-1
 - = 2(1) 6. 3 1)2.1
 - use in rule: ina-inb=ina
 - = 210(<u>5.3</u>)
 - = 2173
 - = 1732
 - = 110
 - K=9

8

5. The height, h metres, of a tree, t years after being planted, is modelled by the equation

$$h^2 = at + b \qquad 0 \leqslant t < 25$$

where a and b are constants.

Given that

- the height of the tree was 2.60 m, exactly 2 years after being planted
- the height of the tree was 5.10 m, exactly 10 years after being planted
- (a) find a complete equation for the model, giving the values of a and b to 3 significant figures.

(4)

Given that the height of the tree was 7 m, exactly 20 years after being planted

(b) evaluate the model, giving reasons for your answer.

(2)

solve simultaneously (using climination)

Question 5 continued

let's use the model to theck this

When t=20:

h= 7.081 which is very close to 7 m

. the model is Volid

(Total for Question 5 is 6 marks)

Figure 1

Figure 1 shows a sketch of a curve C with equation y = f(x) where f(x) is a cubic expression in x.

The curve

- passes through the origin
- has a maximum turning point at (2, 8)
- has a minimum turning point at (6, 0)
- (a) Write down the set of values of x for which

$$f'(x) < 0$$

(1)

The line with equation y = k, where k is a constant, intersects C at only one point.

(b) Find the set of values of k, giving your answer in set notation.

(2)

(c) Find the equation of C. You may leave your answer in factorised form.

(3)

a) This wants where the gradient 1310pe is negative, hence where f(x) 15 doing downwarks) decreasing (graph is going downwarks)

2 < 2 < 6

b) he need where the vertical line only crosses the graph once

{K: K<0, K > 8}

Question 6 continued

2 since the

Curve bounces

pack 19062U.

spe rout) is c

the root) i.e.

we need to find the Value of a plug in the point (2,8)

(Total for Question 6 is 6 marks)

7. (i) Given that p and q are integers such that

pq is even

use algebra to prove by contradiction that at least one of p or q is even.

(3)

(ii) Given that x and y are integers such that

•
$$(x+y)^2 < 9x^2 + y^2$$

show that y > 4x

(2)

i)
Assume if at least one of p or q
is even then pq is odd

e ogg: 6:5W+1 are integers

Pq = (2K)(2M+1) = +KM+2K = 2(2KM+K) = multiple 0+ 2 : even

This contradicts the assumption that pq is odd

then pa is even

ii) (244) = < 922+42

22+224+42<422+42

8x²-2xy>0

 $\frac{2}{2}(4\times - y) > 0$

RIVEN

Question	7	continued
----------	---	-----------

$$\Rightarrow$$
 $+ \times - y < 0$

QED

(Total for Question 7 is 5 marks)

Figure 2

A car stops at two sets of traffic lights.

Figure 2 shows a graph of the speed of the car, $v \, \text{ms}^{-1}$, as it travels between the two sets of traffic lights.

The car takes T seconds to travel between the two sets of traffic lights.

The speed of the car is modelled by the equation

$$v = (10 - 0.4t) \ln(t+1)$$
 $0 \le t \le T$

where t seconds is the time after the car leaves the first set of traffic lights.

According to the model,

(a) find the value of T

(1)

(b) show that the maximum speed of the car occurs when

$$t = \frac{26}{1 + \ln(t+1)} - 1 \tag{4}$$

Using the iteration formula

$$t_{n+1} = \frac{26}{1 + \ln(t_n + 1)} - 1$$

with $t_1 = 7$

- (c) (i) find the value of t_3 to 3 decimal places,
 - (ii) find, by repeated iteration, the time taken for the car to reach maximum speed.

(3)

Question 8 continued

use product rule to differentiate

$$=$$
) -0. $+$ In($+$ 10 - 0. $+$ = 0

Method 1:

Question 8 continued

Factorise 0.4t out

$$\Rightarrow t = \frac{10 - 0.4 \ln(t + t)}{0.4 \ln(t + t) + 1}$$

$$= \frac{10 - 0.410(++)}{0.410(++)+0.4}$$

Divide an terms by 0.4

$$f = \frac{1+10(f+1)}{56} - \frac{1+10(f+1)}{1+10(f+1)}$$

$$t = \frac{26}{1+10(t+1)}$$
 — I as required

Method 2: Get a common denominator

Question 8 continued

group the terms with t together on

$$=$$
 $+ = 10 - 0. + 10 (++1)$

now use long division to get this in the required form

Question 8 continued

c)
$$t_{n+1} = \frac{2c}{10(t^{n+1})+1}-1$$

press enter

Press enter

Press enter again for to

(Total for Question 8 is 8 marks)

Figure 3

Figure 3 shows a sketch of a parallelogram *PQRS*.

Given that

$$\bullet \overrightarrow{PQ} = 2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$$

•
$$\overrightarrow{QR} = 5\mathbf{i} - 2\mathbf{k}$$

(a) show that parallelogram PQRS is a rhombus.

(2)

(b) Find the exact area of the rhombus *PQRS*.

(4)

a) we are to 12 this is a parallelogram
only need to show 2 consecutive
sides are congruent

b) The area of thombus is:

We need the lengths of Qs & PR

P 6 9 6 0 1 A 0 2 0 4 8

DO NOT WRITE IN THIS AREA

Question 9 continued

Area =
$$\sqrt{22} \times \sqrt{94} = \sqrt{2068} = 2\sqrt{517} = \sqrt{517}$$

Note: We could have split the rhombus
into 2 triangles and used
cosine rule

$$(\sqrt{9+})^2 = (\sqrt{29})^2 + (\sqrt{29})^2 - 2(\sqrt{29})(\sqrt{29})\cos^2$$

Build triangle to

Question 9 continued

Area =
$$\sqrt{29}$$
 $\sqrt{2068}$ $\sqrt{2068}$

22

10. A scientist is studying the number of bees and the number of wasps on an island.

The number of bees, measured in thousands, N_b , is modelled by the equation

$$N_b = 45 + 220 \,\mathrm{e}^{0.05t}$$

where *t* is the number of years from the start of the study.

According to the model,

(a) find the number of bees at the start of the study,

(1)

(b) show that, exactly 10 years after the start of the study, the number of bees was increasing at a **rate** of approximately 18 thousand per year.

(3)

The number of wasps, measured in thousands, N_w , is modelled by the equation

$$N_{yy} = 10 + 800 \,\mathrm{e}^{-0.05t}$$

where *t* is the number of years from the start of the study.

When t = T, according to the models, there are an equal number of bees and wasps.

(c) Find the value of *T* to 2 decimal places.

(4)

When t=10: dx = 18.1+ = 18,000/year

Question 10 continued

Solution

Figure 4

Figure 4 shows a sketch of part of the curve C_1 with equation

$$y = 2x^3 + 10 \qquad x > 0$$

and part of the curve C_2 with equation

$$y = 42x - 15x^2 - 7 \qquad x > 0$$

(a) Verify that the curves intersect at $x = \frac{1}{2}$

(2)

The curves intersect again at the point P

(b) Using algebra and showing all stages of working, find the exact x coordinate of P

(5)

When
$$3 = 42(1)^{-15}(1)^{2} = 7 = 41$$

b) intersection points => solve simultaneously

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 11 continued

$$(2x-0.5)(2x^2+16x-34)=0$$

(He knoh
$$3c = -P + 1/2 - 40c$$

this already) =
$$-16 \pm \sqrt{16^2 - 4(2)(-34)}$$

Question 11 continued

M6 6	an.	372	from	the	graph	that	X	<u> 2ï</u>
Positi	78				1 39 30			

					_		
=	2	3	V	3	3	-	4
			_	J			

12. In this question you must show all stages of your working.

Solutions relying on calculator technology are not acceptable.

Show that

$$\int_{1}^{e^2} x^3 \ln x \, \mathrm{d}x = a\mathrm{e}^8 + b$$

where a and b are rational constants to be found.

(5)

use integration by parts

$$0 = 10 \times 30 = \times 3$$

$$\frac{dU}{dz} = \frac{1}{z} \qquad \frac{V}{z} = \frac{2z^4}{4}$$

Question 12 continued

$$\left[\frac{1}{4} \times^{+} \ln \times^{-} \frac{1}{16} \times^{+}\right]_{1}^{e^{2}}$$

(Total for Question 12 is 5 marks)

13. (i) In an arithmetic series, the first term is a and the common difference is d.

Show that

$$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$$
 (3)

(ii) James saves money over a number of weeks to buy a printer that costs £64

He saves £10 in week 1, £9.20 in week 2, £8.40 in week 3 and so on, so that the weekly amounts he saves form an arithmetic sequence.

Given that James takes n weeks to save exactly £64

(a) show that

$$n^2 - 26n + 160 = 0 (2)$$

(b) Solve the equation

$$n^2 - 26n + 160 = 0 ag{1}$$

(c) Hence state the number of weeks James takes to save enough money to buy the printer, giving a brief reason for your answer.

(1)

Write this backwards

Question 13 continued

This is arithmetic with a=10 d=-0.80

Sn = 6+

$$\frac{1}{2}$$
 [2(10) + (h-1)(-0.80)] = 6+

D (20 - 0.8 N + 0.8) = 6+

N120-0.8N+0.8):128

200-0.802+0.80=128

0.8 N2 -20.8 N+128 = 0

÷0.8

$$(U - 19)(U - 16) = 0$$

If n=16: U16=10+15(-0.8)=-2

.. took to weeks to save enough

LUO1

14. In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

(a) Given that

$$2\sin(x - 60^\circ) = \cos(x - 30^\circ)$$

show that

$$\tan x = 3\sqrt{3}$$

(4)

(b) Hence or otherwise solve, for $0 \le \theta < 180^{\circ}$

$$2\sin 2\theta = \cos(2\theta + 30^\circ)$$

giving your answers to one decimal place.

(4)

$$2 \left(\sin x \left(\frac{1}{2} \right) - \cos x \left(\frac{\sqrt{2}}{2} \right) \right) = \cos x \left(\frac{\sqrt{2}}{2} \right) + \sin x \left(\frac{1}{2} \right)$$

$$2\sin x - 2\sqrt{3}\cos x = \sqrt{3}\cos x + \sin x$$

COSX

Note: could have also used that fact that single cosso

Question 14 continued

$$6 = \frac{79.1 - 60}{2}, \frac{259.1 - 60}{2}$$

Figure 5

A company makes toys for children.

Figure 5 shows the design for a solid toy that looks like a piece of cheese.

The toy is modelled so that

- face ABC is a sector of a circle with radius r cm and centre A
- angle BAC = 0.8 radians
- faces ABC and DEF are congruent
- edges AD, CF and BE are perpendicular to faces ABC and DEF
- edges AD, CF and BE have length h cm

Given that the volume of the toy is 240 cm³

(a) show that the surface area of the toy, Scm², is given by

$$S = 0.8r^2 + \frac{1680}{r}$$

making your method clear.

(4)

Using algebraic differentiation,

(b) find the value of r for which S has a stationary point.

(4)

(c) Prove, by further differentiation, that this value of *r* gives the minimum surface area of the toy.

Question 15 continued

Surface area=5=2(
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{$

Question 15 continued

c)
$$\frac{d^35}{dr^2} = (.6 + 3360 + .3)$$

44

Figure 6

Figure 6 shows a sketch of the curve C with parametric equations

$$x = 8\sin^2 t \qquad y = 2\sin 2t + 3\sin t \qquad 0 \leqslant t \leqslant \frac{\pi}{2}$$

The region R, shown shaded in Figure 6, is bounded by C, the x-axis and the line with equation x = 4

(a) Show that the area of R is given by

$$\int_0^a \left(8 - 8\cos 4t + 48\sin^2 t\cos t\right) \mathrm{d}t$$

where a is a constant to be found.

(5)

(b) Hence, using algebraic integration, find the exact area of R.

(4)

$$\frac{94}{9x} = 8(5) \text{ sint cost}$$

$$\frac{7}{7} = 8(2) \text{ sint cost}$$

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 16 continued

$$3c = 4 : 8sin^2 t = 4$$

 $3in^2 t = 1$
 $5in t = 1$

becomes

, t (2510544 32104) (162104 cost) dt

= 14 (45intcost + 35int) (165intcost) df

multiply out the brackets

= [#(645in2+cos2++485in2+cos+)d+

the onswer we ward

heed to use double angle

(2025+-16)

Re-orranging both

Question 16 continued

SUL (1) and (2) back in

$$\int_{0}^{\frac{1}{4}} (6+(\frac{1-\cos 2t}{2})(\frac{\cos 2t+1}{2}) + 48\sin^{2} 4\cos t$$

=
$$\int_{\frac{\pi}{4}} (|e(1-(0257)(co254+1)+482iv,+co24)$$

expand the brackets

use doube angle again

(Total for Question 16 is 9 marks)

TOTAL FOR PAPER IS 100 MARKS

$$= \int_{-\pi}^{\pi} (8 - 8 \cos 4 + 48 \sin^2 + \cos 4) dt$$

$$0 = \frac{\pi}{4}$$

$$0 = \frac{\pi}{4}$$

$$= \left[8 + - \frac{\pi}{4} \cos 4 + 48 \cos 4 (\sin 4)^2 \right] dt$$

$$= \left[8 + - \frac{\pi}{4} \cos 4 + 48 (\sin 4)^3 \right] - 0$$

$$= 2\pi - \frac{8(0)}{4} + 16 \left(\frac{\sqrt{2}}{2} \right)^3$$

$$= 2\pi + 16 \left(\frac{2\sqrt{2}}{8} \right)$$

$$= 2\pi + 4\sqrt{2}$$